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Supplementary Fig. 1 Nyquist plots of the electrocatalysts. 
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Supplementary Fig. 2 BET surface areas and pore size distributions. Nitrogen 

adsorption-desorption isotherm and the corresponding pore size distribution of (a, b) 

NiV-LDH, (c, d) NiVRu-LDH and (e, f) NiVIr-LDH, respectively. 
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Supplementary Fig. 3 SEM images, mapping images and EDS spectra. the 

corresponding mapping images of Ni, V and Ru elements and the EDS spectra of the 

NiVRu-LDH with different Ru content. The Ru in NiVRu-LDH is 0.45 (a), 0.76 (b), 

1.11 (c), 1.43 (d), 1.59 (e) and 1.85 at% (f), respectively. 
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Supplementary Fig. 4 SEM images, mapping images and EDS spectra. SEM images, 

the corresponding mapping images of Ni, V and Ir elements and the EDS spectra of 

the NiVIr-LDH with different Ir content. The Ir in NiVIr-LDH is 0.18 (a), 0.24 (b), 

0.36 (c), 0.43 (d), 0.52 (e) and 0.62 at% (f), respectively. 
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Supplementary Fig. 5 STEM and EDS mapping images. (a) STEM image and the 

corresponding EDS mapping images for (b) Ni, (c) V and (d) Ru of NiVRu-LDH.  
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Supplementary Fig. 6 STEM and EDS mapping images. (a) STEM image and the 

corresponding EDS mapping images for (b) Ni, (c) V and (d) Ir of NiVIr-LDH.  
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Supplementary Fig. 7 XANES spectra. Ni K-edge extended XANES oscillation 

functions k3χ(k) of (a) NiV-LDH, (c) NiVRu-LDH and (e) NiVIr-LDH. V K-edge 

extended XANES oscillation functions k3χ(k) of (b) NiV-LDH, (d) NiVRu-LDH and 

(f) NiVIr-LDH. 
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Supplementary Fig. 8 Polarization curves for HER. The HER polarization curves of 

NiVRu-LDH with different Ru contents. 
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Supplementary Fig. 9 The exchange current densities. The exchange current 

densities of NiV-LDH, NiVRu-LDH, NiVIr-LDH, Ni foam and Pt/C.  
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Supplementary Fig. 10 CV curves. CV curves for NiVRu-LDH recorded between 

-0.2 V and 0.6 V vs. RHE in 1.0 M PBS (pH=7) at a scan rate of 50 mV s-1. 

Since the difficulty in attributing the observed peaks to a given redox couple, the 

number of active sites should be proportional to the integrated charge over the CV 

curve. Assuming a one-electron process for both reduction and oxidation, the upper 

limit of active sites (n) for NiVRu-LDH could be calculated according to the follow 

equation: 

n = Q/2F                                (1) 

where F=96485.3 C/mol and Q are the Faraday constant and the whole charge of CV 

curve, respectively. By this equation and the CV curves, taking NiVRu-LDH as an 

example, the detailed calculation process of n can be provided as follows: 

Q = 
∫VA

v
 = 

0.00544

0.05
 = 0.1088 C                      (2) 

n = 
Q

2F
 = 

0.1088

2×96485.3
 = 5.64×10-7 mol                   (3) 
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Supplementary Fig. 11 Calculated TOFs. The calculated TOFs of NiV-LDH, 

NiVRu-LDH, NiVIr-LDH and Pt/C. 

Assuming that all of active sites were entirely accessible to the electrolyte, the TOF 

values were calculated and plotted against the potential. The following formula was 

used to calculate TOF: 

TOF=I/2nF                            (4) 

where F and n are the Faraday constant and the number of active sites, respectively; I 

is the current density of LSV curve.  
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Supplementary Fig. 12 CVs and the corresponding capacitive currents. CVs for (a) 

NiV-LDH, (b) NiVRu-LDH and (c) NiVIr-LDH at different scan rates. (d) The 

corresponding capacitive currents at 0.25 V as a function of scan rate for NiV-LDH, 

NiVRu-LDH and NiVIr-LDH. 
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Supplementary Fig. 13 SEM image. SEM image of the NiVRu-LDH after a long 

time HER stability test. 

 

 

 

 

 

 

 

 



S-15 
 

 

Supplementary Fig. 14 Polarization curves for OER. The OER polarization curves of 

NiVIr-LDH with different Ir contents. 
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Supplementary Fig. 15 SEM images. SEM image of the NiVIr-LDH after a long 

time OER stability test. 
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Supplementary Fig. 16 Structural modes. The as-built structural models of (a) the 

NiV-LDH, (b) NiVRu-LDH and (c) the NiVIr-LDH. 
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Supplementary Fig. 17 Structural modes. The as-built structural models of the 

NiV-LDH for different steps of HER (a) and (b), and of OER (c), (d) and (e). 
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Supplementary Fig. 18 Structural modes. The as-built structural models of the 

NiVRu-LDH for different steps of OER (a), (b) and (c). 
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Supplementary Fig. 19 Structural modes. The as-built structural models of the 

NiVIr-LDH for different steps of HER (a) and (b). 
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Supplementary Table 1. Summary the fitting parameters of Ni and V K-edge 

EXFAS curves for the as-prepared NiV-LDH, NiVRu-LDH and NiVIr-LDH 

catalysts. 

Sample Path C.N. R (Å) σ2×103 (Å2) ΔE (eV) R factor 

NiV-LDH 
Ni-O 6.4±0.6 2.04±0.01 8.2±0.8 -6.4±1.1 

0.005 
Ni-Ni/V 5.1±0.7 3.09±0.01 9.6±1.0 0.4±1.3 

NiVRu-LDH 
Ni-O 6.5±0.5 2.03±0.01 8.4±0.8 -6.6±1.0 

0.004 
Ni-Ni/V 4.6±0.6 3.08±0.01 9.8±1.0 0.8±1.3 

NiVIr-LDH  
Ni-O 6.5±0.6 2.03±0.01 8.2±0.9 -6.1±1.2 

0.006 
Ni-Ni/V 4.2±0.8 3.08±0.01 9.5±1.3 0.8±1.7 

NiV-LDH 
V-O 5.7±0.6 1.68±0.01 6.7±0.9 1.8±1.6 

0.008 
V-Ni/V 5.3±2.5 3.40±0.03 12.3±3.8 5.6±0.6 

NiVRu-LDH 
V-O 6.5±0.6 1.68±0.01 7.1±0.9 2.5±1.5 

0.008 
V-Ni/V 3.8±2.3 3.37±0.04 17.2±5.6 3.7±4.8 

NiVIr-LDH 
V-O 6.4±0.9 1.66±0.01 8.7±1.3 -2.2±2.3 

0.014 
V-Ni/V 2.8±2.5 3.37±0.05 18.6±9.4 2.5±6.8 

Note: ΔE, inner potential correction; σ2, Debye Waller factor to account for both 

thermal and structural disorders; R-factor, indicating the goodness of the fit. 

 

The obtained XAFS data was processed in Athena (version 0.9.25) for background, 

pre-edge line and post-edge line calibrations. Then Fourier transformed fitting was 

carried out in Artemis (version 0.9.25). The k3 weighting, k-range of 3-13 Å-1 and R 

range of 1-3 Å were used for 2 shell fitting. The model of bulk Ni and NiV-LDH were 

used to calculate the simulated scattering paths. The four parameters, coordination 

number, bond length, Debye-Waller factor and E0 shift (CN, R, σ2, ΔE0) were fitted 

without anyone was fixed, constrained, or correlated. 
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For Wavelet Transform analysis, the χ(k) exported from Athena was imported into the 

Hama Fortran code. The parameters were listed as follow: R range, 1 - 4 Å, k range, 0 

- 13 Å-1; k weight, 3; and Morlet function with κ=10, σ=1 was used as the mother 

wavelet to provide the overall distribution. 
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Supplementary Table 2. Comparison of HER performances for NiVRu-LDH with 

other selected electrocatalysts. 

Electrocatalysts Electrolyte 
Overpotential (mV)/ 

j mA/cm2 

Tafel solpe 

(mV dec-1) 

TOF 

(S-1) 
Ref. 

NiVRu-LDH 1 M KOH 

12/10 

38/100 

48/200 

40 
2.2 

(50 mV) 
This work 

MoNi4/MoO2@Ni 1 M KOH 15/10 30 N/A 1 

NiCo2Px 1 M KOH 58/10 34.3 0.056 (100 mV) 2 

Ni–MoO2-450 

NWs/CC 
1 M KOH 40/10 30 N/A 3 

NC/NiMo/NiMoOx 1 M KOH 29/10 46 N/A 4 

RuCoP 1 M KOH 20/38 37 
7.26 

(100 mV) 
5 

Ru-MoO2 1 M KOH 29/10 31 N/A 6 

IrW/C 0.1 M KOH 29/10 64 
1.95 

(10 mV) 
7 

Ru@C2N 1 M KOH 17/10 38 
1.66 

(50 mV) 
8 

Ru/C3N4/C 0.1 M KOH 79/10 N/A 
4.2 

(100 mV) 
9 
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Supplementary Table 3. Comparison of OER performances for NiVIr-LDH with 

other selected electrocatalysts. 

Electrocatalysts Electrolyte 
Overpotential 

(mV) 
j mA/cm2 Ref. 

NiVIr-LDH 1 M KOH 

180 

243 

247 

10 

50 

100 

This work 

NiV LDHs 1 M KOH 310 10 10 

IrO2 Nanoneedles 1 M H2SO4 313 10 11 

IrO2/CNT 0.5 M H2SO4 293 10 12 

NiFeMn LDHs 1 M KOH 289 20 13 

Ir3Cu MAs 0.1 M HClO4 298 10 14 

IrOOH nanosheets 0.1 M HClO4 344 10 15 

IrW/C 0.1 M HClO4 300 8.1 7 

IrCo0.65 NDs 0.1 M HClO4 281 10 16 

Ir/g-C3N4/NG 0.5 M H2SO4 287 10 17 

 

 

 

 

 

 

 

 

 

 

 

 



S-25 
 

Supplementary Table 4. Comparison of catalysts for overall water splitting 

performances for NiVIr-LDH||NiVRu-LDH with other electrocatalysts. 

Electrode pair Electrolyte 
Potential (V) 

at 10 mA cm-2 
Ref. 

NiVIr-LDH||NiVRu-LDH 1 M KOH 1.42 This work 

FeP/Ni2P 1 M KOH 1.42 18 

Ni2P-NiP2 HNPs||NiFe-LDH 1 M KOH 1.48 19 

Ni0.7Fe0.3PS3@MXene||Ni0.7Fe0.3PS3

@MXene 
1 M KOH 1.65 20 

N-Ni3S2/NF||N-Ni3S2/NF 1 M KOH 1.48 21 

Co3O4-MTA||Co3O4-MTA 1 M KOH 1.63 22 

VOOH||VOOH 1 M KOH 1.62 23 

Cu@NiFe LDH || Cu@NiFe LDH 1 M KOH 1.54 24 

MoS2/Ni3S2 1 M KOH 1.56 25 

Ni/Ni8P3 1 M KOH 1.61 26 
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Supplementary Table 5. The correction of zero point energy and entropy of the 

adsorbed and gaseous species. 

  ZPE (eV) TS (eV) 

*OOH 0.35 0 

*O 0.05 0 

*OH 

*H 

H2O 

0.31 

0.18 

0.56 

0.01 

0.03 

0.67 

H2 0.27 0.41 
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Supplementary Note 1: Role of urea in LDH synthesis. 

To predict the behavior of LDHs in the applications, the control and reproducibility of 

their crystal and particle properties is important and a high crystallinity is necessary. 

The urea hydrolysis method introduced by Costantino et al. was an important 

advancement in this regard27, 28. The urea method utilizes urea instead of NaOH as the 

precipitating agent. The advantage of using urea is that the urea hydrolysis progresses 

slowly which leads to a low degree of super saturation during precipitation. Urea is a 

weak Bronsted base (pKb = 13.8). It is highly soluble in water and its controlled 

hydrolysis in aqueous solutions can yield ammonium cyanate or its ionic form (NH4
+, 

NCO−). Prolonged hydrolysis results in either CO2 in an acidic medium or CO3
-2

 in a 

basic environment as shown below29, 30, 31: 

NH2 - CO - H2N → NH4
+ + NCO−                 (5) 

NCO− + 2H2O →  NH4
+ + CO3

-2
                  (6) 

NCO− + 2H+ + 2H2O →  NH4
+ + HCO3

-
               (7) 

A reaction temperature above 60 °C produces the progressive decomposition of urea 

in ammonium hydroxide leading to a homogeneous precipitation. This method has 

been already employed for the synthesis of well crystallized MAl-LDH (M = Li, Mg, 

Ni, Co), NiFe -LDH, CoTi -LDH and even three-component LDH with large particle 

sizes32, 33, 34. 
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